

### Chemistry Standard level Paper 2

Thursday 12 May 2016 (morning)

|  | Car | ıdida | te se | ssior | num | nber |   |  |
|--|-----|-------|-------|-------|-----|------|---|--|
|  |     |       |       |       |     |      |   |  |
|  |     |       |       |       |     |      | ļ |  |

1 hour 15 minutes

#### Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- · Answer all questions.
- Write your answers in the boxes provided.
- A calculator is required for this paper.
- A clean copy of the **Chemistry data dooklet** is required for this paper.
- The maximum mark for this examination paper is [50 marks].

International Baccalaureate Baccalaureate Baccalaureat International Bachillerato Internacional

| Answer <b>all</b> questions. | Write your answers in the | boxes provided. |
|------------------------------|---------------------------|-----------------|
|------------------------------|---------------------------|-----------------|

| 1. | Phosphine (IUPAC name phosphane) is a hydride of phosphorus, with the formula PH <sub>3</sub> . |       |                                                                                                                                   |     |  |  |  |  |  |  |  |  |  |
|----|-------------------------------------------------------------------------------------------------|-------|-----------------------------------------------------------------------------------------------------------------------------------|-----|--|--|--|--|--|--|--|--|--|
|    | (a)                                                                                             | (i)   | Draw a Lewis (electron dot) structure of phosphine.                                                                               | [1] |  |  |  |  |  |  |  |  |  |
|    |                                                                                                 |       |                                                                                                                                   |     |  |  |  |  |  |  |  |  |  |
|    |                                                                                                 |       |                                                                                                                                   |     |  |  |  |  |  |  |  |  |  |
|    |                                                                                                 |       |                                                                                                                                   |     |  |  |  |  |  |  |  |  |  |
|    |                                                                                                 |       |                                                                                                                                   |     |  |  |  |  |  |  |  |  |  |
|    |                                                                                                 | (ii)  | Outline whether you expect the bonds in phosphine to be polar or non-polar, giving a brief reason.                                | [1] |  |  |  |  |  |  |  |  |  |
|    |                                                                                                 |       |                                                                                                                                   |     |  |  |  |  |  |  |  |  |  |
|    |                                                                                                 |       |                                                                                                                                   |     |  |  |  |  |  |  |  |  |  |
|    |                                                                                                 | (iii) | Explain why the phosphine molecule is not planar.                                                                                 | [2] |  |  |  |  |  |  |  |  |  |
|    |                                                                                                 |       |                                                                                                                                   |     |  |  |  |  |  |  |  |  |  |
|    |                                                                                                 |       |                                                                                                                                   |     |  |  |  |  |  |  |  |  |  |
|    |                                                                                                 |       |                                                                                                                                   |     |  |  |  |  |  |  |  |  |  |
|    |                                                                                                 |       |                                                                                                                                   |     |  |  |  |  |  |  |  |  |  |
|    |                                                                                                 | (iv)  | Phosphine has a much greater molar mass than ammonia. Explain why phosphine has a significantly lower boiling point than ammonia. | [2] |  |  |  |  |  |  |  |  |  |
|    |                                                                                                 |       |                                                                                                                                   |     |  |  |  |  |  |  |  |  |  |
|    |                                                                                                 |       |                                                                                                                                   |     |  |  |  |  |  |  |  |  |  |
|    |                                                                                                 |       |                                                                                                                                   |     |  |  |  |  |  |  |  |  |  |
|    |                                                                                                 |       |                                                                                                                                   |     |  |  |  |  |  |  |  |  |  |
|    |                                                                                                 |       |                                                                                                                                   |     |  |  |  |  |  |  |  |  |  |



#### (Question 1 continued)

(b) Phosphine is usually prepared by heating white phosphorus, one of the allotropes of phosphorus, with concentrated aqueous sodium hydroxide. The equation for the reaction is:

$${\rm P_4(s)} + 3{\rm OH^-(aq)} + 3{\rm H_2O\,(l)} \rightarrow {\rm PH_3(g)} + 3{\rm H_2PO_2^-(aq)}$$

| (  | i)  | Identify  | one other | element that   | has allotrop   | es and list two | of its allotro | pes. [2 | 21         |
|----|-----|-----------|-----------|----------------|----------------|-----------------|----------------|---------|------------|
| ١. | ''' | ideritiiy |           | CICITICITE UTA | t Has allottop | Co and not two  | or its anotio  | pco. [/ | <u>- 1</u> |

| Element:                                                                                                                                                                                                      |     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                                                                                                               |     |
| Allotrope 1:                                                                                                                                                                                                  |     |
|                                                                                                                                                                                                               |     |
| Allotrope 2:                                                                                                                                                                                                  |     |
|                                                                                                                                                                                                               |     |
| (ii) The first reagent is written as P <sub>4</sub> , not 4P. Describe the difference between P <sub>4</sub> and 4P.                                                                                          | [1] |
|                                                                                                                                                                                                               |     |
|                                                                                                                                                                                                               |     |
|                                                                                                                                                                                                               |     |
| (iii) The ion H <sub>2</sub> PO <sub>2</sub> <sup>-</sup> is amphiprotic. Outline what is meant by amphiprotic, giving the formulas of <b>both</b> species it is converted to when it behaves in this manner. | [2] |
|                                                                                                                                                                                                               |     |
|                                                                                                                                                                                                               |     |
|                                                                                                                                                                                                               |     |
|                                                                                                                                                                                                               |     |



**Turn over** 

#### (Question 1 continued)

| (iv) | State the oxidation state of phosphorus in $P_4$ and $H_2PO_2^-$ . | [2] |
|------|--------------------------------------------------------------------|-----|
|------|--------------------------------------------------------------------|-----|

| P <sub>4</sub> :                              |
|-----------------------------------------------|
|                                               |
| H <sub>2</sub> PO <sub>2</sub> <sup>-</sup> : |
|                                               |

(v) Oxidation is now defined in terms of change of oxidation number. Explore how earlier definitions of oxidation and reduction may have led to conflicting answers for the conversion of  $P_4$  to  $H_2PO_2^-$  and the way in which the use of oxidation numbers has resolved this.

[3]

| • • |   | <br>• | • | • | <br>• | • | • | • | • | • | • | • | <br>• | • | • | • | • | <br>• | • | • | • | • | <br>• | • | • | <br>• | • | <br>• | • | <br>• | • | <br>• | • | • | <br>• | • | • | • | <br>• | • | • | <br>• | • |   | <br>• |   |
|-----|---|-------|---|---|-------|---|---|---|---|---|---|---|-------|---|---|---|---|-------|---|---|---|---|-------|---|---|-------|---|-------|---|-------|---|-------|---|---|-------|---|---|---|-------|---|---|-------|---|---|-------|---|
| • • | • |       | ٠ | • | <br>• | • | • | • | • | • |   |   | <br>  | • | ٠ | • | • | <br>• | ٠ | • | ٠ | • | <br>٠ | • | • | <br>٠ | • | <br>٠ | ٠ | <br>• | ٠ | <br>• | • | • |       | • | • | • | <br>٠ | ٠ | • | <br>• | ٠ |   | <br>٠ |   |
|     | • | <br>• | • | • |       | • | • | • | • |   |   |   | <br>  |   | ٠ | ٠ | • | <br>• | ٠ | • | • | • | <br>• | • | • | <br>• | • | <br>٠ | • | <br>• | • | <br>• | • | • | <br>• | • | • |   | <br>• | • | • | <br>• | • |   | <br>٠ | ۰ |
|     | • | <br>• | • | • |       | • | • | • | • |   |   |   | <br>  |   | ٠ | ٠ | • | <br>• | ٠ | • | • | • | <br>• | • | • | <br>• | • | <br>٠ | • | <br>• | • | <br>• | • | • | <br>• | • | • |   | <br>• | • | • | <br>• | • |   | <br>٠ | ٠ |
|     | • | <br>• | • | • |       | • | • | • | • |   |   |   | <br>  |   | ٠ | ٠ | • | <br>• | • | • | • | • | <br>٠ | • | • | <br>• | • | <br>• | • | <br>• | • | <br>• | • | • | <br>• | • | • |   | <br>• | • | • | <br>• | • |   | <br>٠ | ۰ |
|     | • | <br>• | • | • |       |   | • | • | • |   |   |   | <br>  |   | ٠ | • | • | <br>• | ٠ | • | • | • | <br>٠ | • | • | <br>• | • | <br>٠ | • | <br>• | • | <br>• | • | • | <br>• | ٠ | • | • | <br>• | • | • | <br>٠ | • |   | <br>• | • |
|     | ٠ |       | ٠ | • |       | • | ٠ | ٠ | • | • | • |   | <br>  | • | ٠ | ٠ |   |       | ٠ | • | • | - | <br>٠ | • |   | <br>• | • | <br>٠ | ٠ |       | ٠ | <br>• | • | • | <br>- | ٠ | • | - | <br>• | ٠ |   | <br>٠ | • | - | <br>٠ | ۰ |

(c) 2.478 g of white phosphorus was used to make phosphine according to the equation:

$$P_4(s) + 3OH^-(aq) + 3H_2O(l) \rightarrow PH_3(g) + 3H_2PO_2^-(aq)$$

(i) Calculate the amount, in mol, of white phosphorus used. [1]





# (Question 1 continued)

| (ii) This phosphorus was reacted with 100.0 cm³ of 5.00 mol dm⁻³ aqueous sodium<br>hydroxide. Deduce, showing your working, which was the limiting reagent. | [1] |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|                                                                                                                                                             |     |
|                                                                                                                                                             |     |
|                                                                                                                                                             |     |
| (iii) Determine the excess amount, in mol, of the other reagent.                                                                                            | [1] |
|                                                                                                                                                             |     |
|                                                                                                                                                             |     |
|                                                                                                                                                             |     |
| (iv) Determine the volume of phosphine, measured in cm³ at standard temperature and pressure, that was produced.                                            | [1] |
|                                                                                                                                                             |     |
|                                                                                                                                                             |     |
|                                                                                                                                                             |     |



| 2. | _   | ırities (<br>water. | cause phosphine to ignite spontaneously in air to form an oxide of phosphorus                                                                                                      |     |
|----|-----|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | (a) | (i)                 | 200.0 g of air was heated by the energy from the complete combustion of 1.00 mol phosphine. Calculate the temperature rise using section 1 of the data booklet and the data below. | [1] |
|    |     |                     | Standard enthalpy of combustion of phosphine, $\Delta H_c^{\ominus} = -750 \text{kJ}\text{mol}^{-1}$                                                                               |     |
|    |     |                     | Specific heat capacity of air = $1.00 \mathrm{Jg^{-1}K^{-1}} = 1.00 \mathrm{kJkg^{-1}K^{-1}}$                                                                                      |     |
|    |     |                     |                                                                                                                                                                                    |     |
|    |     |                     |                                                                                                                                                                                    |     |
|    |     |                     |                                                                                                                                                                                    |     |
|    |     |                     |                                                                                                                                                                                    |     |
|    |     | (ii)                | The oxide formed in the reaction with air contains 43.6% phosphorus by mass. Determine the empirical formula of the oxide, showing your method.                                    | [3] |
|    |     |                     |                                                                                                                                                                                    |     |
|    |     |                     |                                                                                                                                                                                    |     |
|    |     |                     |                                                                                                                                                                                    |     |
|    |     |                     |                                                                                                                                                                                    |     |
|    |     |                     |                                                                                                                                                                                    |     |
|    |     |                     |                                                                                                                                                                                    |     |
|    |     |                     |                                                                                                                                                                                    |     |
|    |     | (iii)               | The molar mass of the oxide is approximately 285 g mol <sup>-1</sup> . Determine the molecular formula of the oxide.                                                               | [1] |
|    |     |                     |                                                                                                                                                                                    |     |
|    |     |                     |                                                                                                                                                                                    |     |
|    |     |                     |                                                                                                                                                                                    |     |
|    |     |                     |                                                                                                                                                                                    |     |



| (Question | 2 | continued) |
|-----------|---|------------|
|           |   |            |

| (b)  | (i)      | State the equation for the reaction of this oxide of phosphorus with water.                             | [1] |
|------|----------|---------------------------------------------------------------------------------------------------------|-----|
|      |          |                                                                                                         |     |
|      |          |                                                                                                         |     |
|      | (ii)     | Predict how dissolving an oxide of phosphorus would affect the pH and electrical conductivity of water. | [1] |
| pH:  |          |                                                                                                         |     |
|      |          |                                                                                                         |     |
| Elec | trical ( | conductivity:                                                                                           |     |
|      |          |                                                                                                         |     |
|      | (iii)    | Suggest why oxides of phosphorus are not major contributors to acid deposition.                         | [1] |
|      |          |                                                                                                         |     |
|      |          |                                                                                                         |     |
|      |          |                                                                                                         |     |



Turn over

[2]

# (Question 2 continued)

| (iv) | The levels of sulfur dioxide, a major contributor to acid deposition, c | an be       |
|------|-------------------------------------------------------------------------|-------------|
|      | minimized by either pre-combustion and post-combustion methods.         | Outline one |
|      | technique of each method.                                               |             |

| Pre-combustion:  |      |  |
|------------------|------|--|
|                  | <br> |  |
|                  | <br> |  |
| Post-combustion: |      |  |
|                  | <br> |  |
|                  | <br> |  |



|   | $\sim$ |   |
|---|--------|---|
| _ | ч      | _ |

**3.** Phosgene, COCl<sub>2</sub>, is usually produced by the reaction between carbon monoxide and chlorine according to the equation:

$$CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$$
  $\Delta H = -108 \text{ kJ}$ 

(a) (i) Deduce the equilibrium constant expression,  $K_c$ , for this reaction.

[1]

| <br> | <br> |
|------|------|
| <br> | <br> |

(ii) State the effect of an increase in the total pressure on the equilibrium constant,  $K_c$ .

[1]

| <br> | <br> |
|------|------|
|      |      |

(b) (i) Sketch the potential energy profile for the synthesis of phosgene, using the axes given, indicating both the enthalpy of reaction and activation energy.

[2]



Progress of reaction

(ii) This reaction is normally carried out using a catalyst. Draw a dotted line labelled "Catalysed" on the diagram above to indicate the effect of the catalyst.

(This question continues on the following page)



[1]

### (Question 3 continued)

(iii) Sketch and label a second Maxwell–Boltzmann energy distribution curve representing the same system but at a higher temperature,  $T_{\text{higher}}$ .

[1]



| /i. / | Explain why an increase in temperature increases the rate of this reaction.    | [2] |
|-------|--------------------------------------------------------------------------------|-----|
| (IV   | ) — Explain why an increase in lemberature increases the rate of this reaction | 1/1 |
| (     | = xpiam mily an moreage in temperature moreages the rate of the reaction.      | [-] |

|  |  | ٠ |  |  |  |  |  |  |  |  |  | <br> | <br> | • |  |  |  | <br> | • |  |  | <br> | •    |  |  |  |  |      |  |  |  | <br> |  |  |
|--|--|---|--|--|--|--|--|--|--|--|--|------|------|---|--|--|--|------|---|--|--|------|------|--|--|--|--|------|--|--|--|------|--|--|
|  |  |   |  |  |  |  |  |  |  |  |  |      | <br> |   |  |  |  |      |   |  |  | <br> | <br> |  |  |  |  | <br> |  |  |  |      |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |      | <br> |   |  |  |  |      |   |  |  | <br> | <br> |  |  |  |  | <br> |  |  |  |      |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |      | <br> |   |  |  |  |      |   |  |  | <br> | <br> |  |  |  |  | <br> |  |  |  |      |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |      | <br> |   |  |  |  |      |   |  |  | <br> |      |  |  |  |  | <br> |  |  |  |      |  |  |
|  |  |   |  |  |  |  |  |  |  |  |  |      |      |   |  |  |  |      |   |  |  |      |      |  |  |  |  |      |  |  |  |      |  |  |



**4.** Alkenes are widely used in the production of polymers. The compound **A**, shown below, is used in the manufacture of synthetic rubber.



| (a) | (i)   | State the name, applying IUPAC rules, of compound <b>A</b> .                                              | [1] |
|-----|-------|-----------------------------------------------------------------------------------------------------------|-----|
|     |       |                                                                                                           |     |
|     | (ii)  | Draw a section, showing three repeating units, of the polymer that can be formed from compound <b>A</b> . | [1] |
|     |       |                                                                                                           |     |
|     |       |                                                                                                           |     |
|     |       |                                                                                                           |     |
|     | (iii) | Compound <b>A</b> is flammable. Formulate the equation for its complete combustion.                       | [1] |
|     |       |                                                                                                           |     |

(This question continues on the following page)



**Turn over** 

# (Question 4 continued)

(b) Compound **B** is related to compound **A**.



| (1)       | the same way as compound <b>A</b> and compound <b>B</b> .                                                                                  | [1] |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------|-----|
|           |                                                                                                                                            |     |
| (ii)      | Suggest a chemical test to distinguish between compound <b>A</b> and compound <b>B</b> , giving the observation you would expect for each. | [2] |
| Test:     |                                                                                                                                            |     |
|           |                                                                                                                                            |     |
|           |                                                                                                                                            |     |
| Observati | on with <b>A</b> :                                                                                                                         |     |
|           |                                                                                                                                            |     |
| Observati | on with <b>B</b> :                                                                                                                         |     |
|           |                                                                                                                                            |     |



[2]

[1]

[2]

#### (Question 4 continued)

(iii) Spectroscopic methods could also be used to distinguish between compounds **A** and **B**.

Predict one difference in the IR spectra **and** one difference in the <sup>1</sup>H NMR spectra of these compounds, using sections 26 and 27 of the data booklet.

<sup>1</sup>H NMR spectra:

(c) A sample of compound **A** was prepared in which the <sup>12</sup>C in the CH, group was replaced

- (c) A sample of compound  $\bf A$  was prepared in which the  $^{12}{\rm C}$  in the CH $_2$  group was replaced by  $^{13}{\rm C}$ .
  - (i) State the main difference between the mass spectrum of this sample and that of normal compound **A**.

.....

(ii) State the structure of the nucleus and the orbital diagram of <sup>13</sup>C in its ground state.

Orbital diagram

2s 2n



**Turn over** 

# (Question 4 continued)

| (d) Draw a 1s atom | ic orbital and a 2p atomic orbital. | [1] |
|--------------------|-------------------------------------|-----|
| 1s:                | 2p:                                 |     |
|                    |                                     |     |
|                    |                                     |     |
|                    |                                     |     |



Please **do not** write on this page.

Answers written on this page will not be marked.



Please **do not** write on this page.

Answers written on this page will not be marked.

