Chemistry Standard level Paper 2 Thursday 12 May 2016 (morning) | | Car | ıdida | te se | ssior | num | nber | | | |--|-----|-------|-------|-------|-----|------|---|--| | | | | | | | | | | | | | | | | | | ļ | | 1 hour 15 minutes #### Instructions to candidates - Write your session number in the boxes above. - Do not open this examination paper until instructed to do so. - · Answer all questions. - Write your answers in the boxes provided. - A calculator is required for this paper. - A clean copy of the **Chemistry data dooklet** is required for this paper. - The maximum mark for this examination paper is [50 marks]. International Baccalaureate Baccalaureate Baccalaureat International Bachillerato Internacional | Answer all questions. | Write your answers in the | boxes provided. | |------------------------------|---------------------------|-----------------| |------------------------------|---------------------------|-----------------| | 1. | Phosphine (IUPAC name phosphane) is a hydride of phosphorus, with the formula PH ₃ . | | | | | | | | | | | | | |----|---|-------|---|-----|--|--|--|--|--|--|--|--|--| | | (a) | (i) | Draw a Lewis (electron dot) structure of phosphine. | [1] | (ii) | Outline whether you expect the bonds in phosphine to be polar or non-polar, giving a brief reason. | [1] | (iii) | Explain why the phosphine molecule is not planar. | [2] | (iv) | Phosphine has a much greater molar mass than ammonia. Explain why phosphine has a significantly lower boiling point than ammonia. | [2] | #### (Question 1 continued) (b) Phosphine is usually prepared by heating white phosphorus, one of the allotropes of phosphorus, with concentrated aqueous sodium hydroxide. The equation for the reaction is: $${\rm P_4(s)} + 3{\rm OH^-(aq)} + 3{\rm H_2O\,(l)} \rightarrow {\rm PH_3(g)} + 3{\rm H_2PO_2^-(aq)}$$ | (| i) | Identify | one other | element that | has allotrop | es and list two | of its allotro | pes. [2 | 21 | |----|-----|-----------|-----------|----------------|----------------|-----------------|----------------|---------|------------| | ١. | ''' | ideritiiy | | CICITICITE UTA | t Has allottop | Co and not two | or its anotio | pco. [/ | <u>- 1</u> | | Element: | | |---|-----| | | | | Allotrope 1: | | | | | | Allotrope 2: | | | | | | (ii) The first reagent is written as P ₄ , not 4P. Describe the difference between P ₄ and 4P. | [1] | | | | | | | | | | | (iii) The ion H ₂ PO ₂ ⁻ is amphiprotic. Outline what is meant by amphiprotic, giving the formulas of both species it is converted to when it behaves in this manner. | [2] | | | | | | | | | | | | | **Turn over** #### (Question 1 continued) | (iv) | State the oxidation state of phosphorus in P_4 and $H_2PO_2^-$. | [2] | |------|--|-----| |------|--|-----| | P ₄ : | |---| | | | H ₂ PO ₂ ⁻ : | | | (v) Oxidation is now defined in terms of change of oxidation number. Explore how earlier definitions of oxidation and reduction may have led to conflicting answers for the conversion of P_4 to $H_2PO_2^-$ and the way in which the use of oxidation numbers has resolved this. [3] | • • | |
• | • | • |
• | • | • | • | • | • | • | • |
• | • | • | • | • |
• | • | • | • | • |
• | • | • |
• | • |
• | • |
• | • |
• | • | • |
• | • | • | • |
• | • | • |
• | • | |
• | | |-----|---|-------|---|---|-------|---|---|---|---|---|---|---|-------|---|---|---|---|-------|---|---|---|---|-------|---|---|-------|---|-------|---|-------|---|-------|---|---|-------|---|---|---|-------|---|---|-------|---|---|-------|---| | • • | • | | ٠ | • |
• | • | • | • | • | • | | |
 | • | ٠ | • | • |
• | ٠ | • | ٠ | • |
٠ | • | • |
٠ | • |
٠ | ٠ |
• | ٠ |
• | • | • | | • | • | • |
٠ | ٠ | • |
• | ٠ | |
٠ | | | | • |
• | • | • | | • | • | • | • | | | |
 | | ٠ | ٠ | • |
• | ٠ | • | • | • |
• | • | • |
• | • |
٠ | • |
• | • |
• | • | • |
• | • | • | |
• | • | • |
• | • | |
٠ | ۰ | | | • |
• | • | • | | • | • | • | • | | | |
 | | ٠ | ٠ | • |
• | ٠ | • | • | • |
• | • | • |
• | • |
٠ | • |
• | • |
• | • | • |
• | • | • | |
• | • | • |
• | • | |
٠ | ٠ | | | • |
• | • | • | | • | • | • | • | | | |
 | | ٠ | ٠ | • |
• | • | • | • | • |
٠ | • | • |
• | • |
• | • |
• | • |
• | • | • |
• | • | • | |
• | • | • |
• | • | |
٠ | ۰ | | | • |
• | • | • | | | • | • | • | | | |
 | | ٠ | • | • |
• | ٠ | • | • | • |
٠ | • | • |
• | • |
٠ | • |
• | • |
• | • | • |
• | ٠ | • | • |
• | • | • |
٠ | • | |
• | • | | | ٠ | | ٠ | • | | • | ٠ | ٠ | • | • | • | |
 | • | ٠ | ٠ | | | ٠ | • | • | - |
٠ | • | |
• | • |
٠ | ٠ | | ٠ |
• | • | • |
- | ٠ | • | - |
• | ٠ | |
٠ | • | - |
٠ | ۰ | (c) 2.478 g of white phosphorus was used to make phosphine according to the equation: $$P_4(s) + 3OH^-(aq) + 3H_2O(l) \rightarrow PH_3(g) + 3H_2PO_2^-(aq)$$ (i) Calculate the amount, in mol, of white phosphorus used. [1] # (Question 1 continued) | (ii) This phosphorus was reacted with 100.0 cm³ of 5.00 mol dm⁻³ aqueous sodium
hydroxide. Deduce, showing your working, which was the limiting reagent. | [1] | |---|-----| | | | | | | | | | | (iii) Determine the excess amount, in mol, of the other reagent. | [1] | | | | | | | | | | | (iv) Determine the volume of phosphine, measured in cm³ at standard temperature and pressure, that was produced. | [1] | | | | | | | | | | | 2. | _ | ırities (
water. | cause phosphine to ignite spontaneously in air to form an oxide of phosphorus | | |----|-----|---------------------|--|-----| | | (a) | (i) | 200.0 g of air was heated by the energy from the complete combustion of 1.00 mol phosphine. Calculate the temperature rise using section 1 of the data booklet and the data below. | [1] | | | | | Standard enthalpy of combustion of phosphine, $\Delta H_c^{\ominus} = -750 \text{kJ}\text{mol}^{-1}$ | | | | | | Specific heat capacity of air = $1.00 \mathrm{Jg^{-1}K^{-1}} = 1.00 \mathrm{kJkg^{-1}K^{-1}}$ | (ii) | The oxide formed in the reaction with air contains 43.6% phosphorus by mass. Determine the empirical formula of the oxide, showing your method. | [3] | (iii) | The molar mass of the oxide is approximately 285 g mol ⁻¹ . Determine the molecular formula of the oxide. | [1] | (Question | 2 | continued) | |-----------|---|------------| | | | | | (b) | (i) | State the equation for the reaction of this oxide of phosphorus with water. | [1] | |------|----------|---|-----| | | | | | | | | | | | | (ii) | Predict how dissolving an oxide of phosphorus would affect the pH and electrical conductivity of water. | [1] | | pH: | | | | | | | | | | Elec | trical (| conductivity: | | | | | | | | | (iii) | Suggest why oxides of phosphorus are not major contributors to acid deposition. | [1] | | | | | | | | | | | | | | | | Turn over [2] # (Question 2 continued) | (iv) | The levels of sulfur dioxide, a major contributor to acid deposition, c | an be | |------|---|-------------| | | minimized by either pre-combustion and post-combustion methods. | Outline one | | | technique of each method. | | | Pre-combustion: | | | |------------------|------|--| | |
 | | | |
 | | | Post-combustion: | | | | |
 | | | |
 | | | | \sim | | |---|--------|---| | _ | ч | _ | **3.** Phosgene, COCl₂, is usually produced by the reaction between carbon monoxide and chlorine according to the equation: $$CO(g) + Cl_2(g) \rightleftharpoons COCl_2(g)$$ $\Delta H = -108 \text{ kJ}$ (a) (i) Deduce the equilibrium constant expression, K_c , for this reaction. [1] |
 |
 | |------|------| |
 |
 | (ii) State the effect of an increase in the total pressure on the equilibrium constant, K_c . [1] |
 |
 | |------|------| | | | (b) (i) Sketch the potential energy profile for the synthesis of phosgene, using the axes given, indicating both the enthalpy of reaction and activation energy. [2] Progress of reaction (ii) This reaction is normally carried out using a catalyst. Draw a dotted line labelled "Catalysed" on the diagram above to indicate the effect of the catalyst. (This question continues on the following page) [1] ### (Question 3 continued) (iii) Sketch and label a second Maxwell–Boltzmann energy distribution curve representing the same system but at a higher temperature, T_{higher} . [1] | /i. / | Explain why an increase in temperature increases the rate of this reaction. | [2] | |-------|--|-----| | (IV |) — Explain why an increase in lemberature increases the rate of this reaction | 1/1 | | (| = xpiam mily an moreage in temperature moreages the rate of the reaction. | [-] | | | | ٠ | | | | | | | | | |
 |
 | • | | | |
 | • | | |
 | • | | | | | | | | |
 | | | |--|--|---|--|--|--|--|--|--|--|--|--|------|------|---|--|--|--|------|---|--|--|------|------|--|--|--|--|------|--|--|--|------|--|--| | | | | | | | | | | | | | |
 | | | | | | | | |
 |
 | | | | |
 |
 | | | | | | | | |
 |
 | | | | |
 |
 | | | | | | | | |
 |
 | | | | |
 |
 | | | | | | | | |
 | | | | | |
 | **4.** Alkenes are widely used in the production of polymers. The compound **A**, shown below, is used in the manufacture of synthetic rubber. | (a) | (i) | State the name, applying IUPAC rules, of compound A . | [1] | |-----|-------|---|-----| | | | | | | | (ii) | Draw a section, showing three repeating units, of the polymer that can be formed from compound A . | [1] | | | | | | | | | | | | | | | | | | (iii) | Compound A is flammable. Formulate the equation for its complete combustion. | [1] | | | | | | (This question continues on the following page) **Turn over** # (Question 4 continued) (b) Compound **B** is related to compound **A**. | (1) | the same way as compound A and compound B . | [1] | |-----------|--|-----| | | | | | (ii) | Suggest a chemical test to distinguish between compound A and compound B , giving the observation you would expect for each. | [2] | | Test: | | | | | | | | | | | | Observati | on with A : | | | | | | | Observati | on with B : | | | | | | [2] [1] [2] #### (Question 4 continued) (iii) Spectroscopic methods could also be used to distinguish between compounds **A** and **B**. Predict one difference in the IR spectra **and** one difference in the ¹H NMR spectra of these compounds, using sections 26 and 27 of the data booklet. ¹H NMR spectra: (c) A sample of compound **A** was prepared in which the ¹²C in the CH, group was replaced - (c) A sample of compound $\bf A$ was prepared in which the $^{12}{\rm C}$ in the CH $_2$ group was replaced by $^{13}{\rm C}$. - (i) State the main difference between the mass spectrum of this sample and that of normal compound **A**. (ii) State the structure of the nucleus and the orbital diagram of ¹³C in its ground state. Orbital diagram 2s 2n **Turn over** # (Question 4 continued) | (d) Draw a 1s atom | ic orbital and a 2p atomic orbital. | [1] | |--------------------|-------------------------------------|-----| | 1s: | 2p: | | | | | | | | | | | | | | Please **do not** write on this page. Answers written on this page will not be marked. Please **do not** write on this page. Answers written on this page will not be marked.