

Chemistry Higher level Paper 2

Wednesday 16 May 2018 (afternoon)

		Car	ıdida	te se	ssior	nun	nber	
- 1								

2 hours 15 minutes

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Answer all questions.
- · Answers must be written within the answer boxes provided.
- A calculator is required for this paper.
- A clean copy of the **chemistry data booklet** is required for this paper.
- The maximum mark for this examination paper is [95 marks].

International Baccalaureate
Baccalauréat International
Bachillerato Internacional

2218-6108

Answer all questions. Answers must be written within the answer boxes provided.

1.	Urea	a, (H ₂ N	N) ₂ CO, is excreted by mammals and can be used as a fertilizer.	
	(a)	(i)	Calculate the percentage by mass of nitrogen in urea to two decimal places using section 6 of the data booklet.	[2]
		(ii)	Suggest how the percentage of nitrogen affects the cost of transport of fertilizers giving a reason.	[1]

(Question 1 continued)

(b) The structural formula of urea is shown.

Predict the electron domain and molecular geometries at the nitrogen and carbon atoms, applying the VSEPR theory.

	Electron domain geometry	Molecular geometry
Nitrogen		
Carbon		trigonal planar

[3]

(c) Urea can be made by reacting potassium cyanate, KNCO, with ammonium chloride, NH_4Cl .

$$KNCO(aq) + NH_4Cl(aq) \rightarrow (H_2N)_2CO(aq) + KCl(aq)$$

Determine the maximum mass of urea that could be formed from $50.0\,\mathrm{cm^3}$ of $0.100\,\mathrm{mol\,dm^{-3}}$ potassium cyanate solution.

[2]

	•	٠	•		٠	•	•	 •	٠	•			•	٠		 •	٠	•	•		 ٠.	 •	٠	٠		•	٠	٠		 •	•	•		٠	•	 •	٠	•	 	•	٠		 		
											-	 									 															 -			 				 		

Turn over

(Question 1 continued)

(d) Urea can also be made by the direct combination of ammonia and carbon dioxide gases.

$$2NH_{3}(g) + CO_{2}(g) \rightleftharpoons (H_{2}N)_{2}CO(g) + H_{2}O(g) \qquad \qquad \Delta H < 0$$

(i) State the equilibrium constant expression, K_c . [1]

.....

(ii) Predict, with a reason, the effect on the equilibrium constant, K_c , when the temperature is increased.

[1]

(iii) Determine an approximate order of magnitude for K_c , using sections 1 and 2 of the data booklet. Assume ΔG^{\ominus} for the forward reaction is approximately +50 kJ at 298 K.

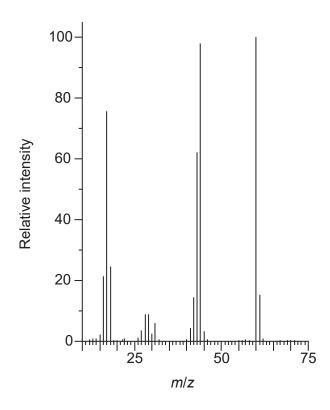
[2]

(e) (i) Suggest one reason why urea is a solid and ammonia a gas at room temperature. [1]

(Question	1	continued)
-----------	---	------------

	(ii)	Sketch two different hydrogen bonding interactions between ammonia and water.	[2]
(f)	The	combustion of urea produces water, carbon dioxide and nitrogen.	
	Forr	nulate a balanced equation for the reaction.	[2]
(51)	0-1-	and the many income values of CO. in any 3 mand used at CTD but the same bustion of	
(g)		culate the maximum volume of CO ₂ , in cm ³ , produced at STP by the combustion of 00 g of urea, using sections 2 and 6 of the data booklet.	[1]

Turn over


Question	1	continued)	١
~	•	,	,

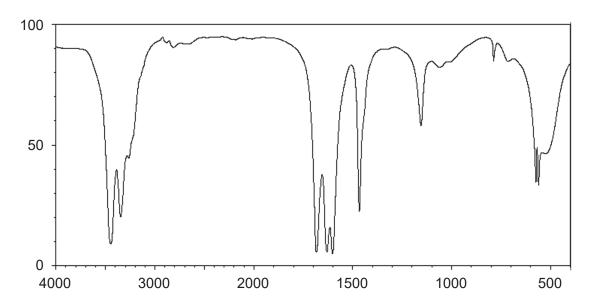
(n)	complex ion.	[2]
(i)	The C–N bonds in urea are shorter than might be expected for a single C–N bond. Suggest, in terms of electrons, how this could occur.	[1]

(Question 1 continued)

(j) The mass spectrum of urea is shown below.

[Source: NIST Mass Spec Data Center, S.E. Stein, director, "Mass Spectra" in *NIST Chemistry WebBook*, NIST Standard Reference Database Number 69, Eds. P.J. Linstrom and W.G. Mallard, National Institute of Standards and Technology, Gaithersburg MD, 20899, doi:10.18434/T4D303, (retrieved May 31, 2018).]

Identify the species responsible for the peaks at m/z = 60 and 44. [2]


60:			
44:			

Turn over

(Question 1 continued)

(k) The IR spectrum of urea is shown below.

[Source: SDBS, National Institute of Advanced Industrial Science and Technology]

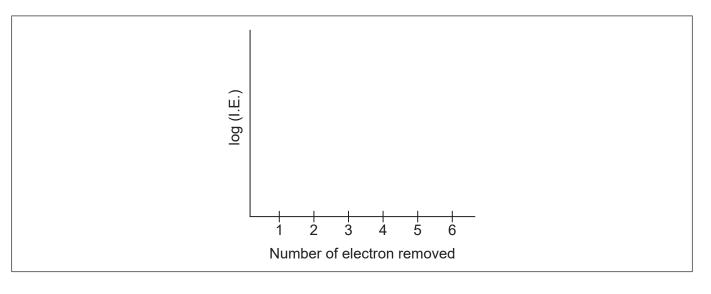
Identify the bonds causing the absorptions at $3450\,\mathrm{cm}^{-1}$ and $1700\,\mathrm{cm}^{-1}$ using section 26 of the data booklet.

[2]

3450 cm ⁻¹ :			
1700 cm ⁻¹ :			

(1)	/:	\	Dradiet the number of signals in the ¹ LL NMD apartrum of urea
(I)	(i)	Predict the number of signals in the ¹ H NMR spectrum of urea.
	(i	i)	Predict the splitting pattern of the ¹ H NMR spectrum of urea.
	(i	ii)	Outline why TMS (tetramethylsilane) may be added to the sample to carry out ¹ H NMR spectroscopy and why it is particularly suited to this role.
Ca	ılciur	n ca	arbide, CaC ₂ , is an ionic solid.
(a)) [eso	cribe the nature of ionic bonding.
(b)			cribe how the relative atomic mass of a sample of calcium could be determined its mass spectrum.

Turn over


(c)	sodium compounds are introduced into a gas flame a red colour is seen; sodium compounds give a yellow flame. Outline the source of the colours and why they are different.	[2]
(d)	(i) Suggest two reasons why solid calcium has a greater density than solid potassium.	[2]
	(ii) Outline why solid calcium is a good conductor of electricity.	[1]

(Question 2 continued)

(e) Sketch a graph of the first six ionization energies of calcium.

[2]

(f) Calcium carbide reacts with water to form ethyne and calcium hydroxide.

$$CaC_2(s) + H_2O(l) \rightarrow C_2H_2(g) + Ca(OH)_2(aq)$$

Estimate the pH of the resultant solution.

[1]

(g) (i) Describe how sigma (σ) and pi (π) bonds are formed.

[2]

	•
sigma (σ):	
pi (π):	

Turn over

(Question 2 continued)

	(ii)	Deduce the number of σ and π bonds in a molecule of ethyne.	[1]
	sigma (σ):	
	pi (π):		
3.	This ques	stion is about ethene, C ₂ H ₄ , and ethyne, C ₂ H ₂ .	
	(a) (i)	Ethyne, like ethene, undergoes hydrogenation to form ethane. State the conditions required.	[2]
	(ii)	Outline the formation of polyethene from ethene by drawing three repeating units of the polymer.	[1]

(Question 3 continued)

(b)		rne reacts with chlorine in a similar way to ethene. Formulate equations for the wing reactions.	[2]
One	mole	of ethyne reacts with one mole of chlorine:	
One	mole	of benzene reacts with one mole of chlorine:	
(c)	(i)	Under certain conditions, ethyne can be converted to benzene.	
		Determine the standard enthalpy change, ΔH^{\ominus} , for the reaction stated, using section 11 of the data booklet.	[2]
		$3C_2H_2(g) \rightarrow C_6H_6(g)$	

Turn over

[2]

	(ii)		ter ng														th	e f	oll	WC	ing	si	mil	ar	rea	cti	on,	[2]	
								30	C ₂ F	H ₂ (g) ·	\rightarrow	C	H ₆	(l)														_
			 	٠.		 	 	 			٠.		٠.			 	٠.												
			 			 	 	 ٠.		٠.			٠.	٠.		 							٠.	٠.					
			 			 	 	 			٠.		٠.			 							٠.						
			 			 	 	 			٠.					 													
			 			 	 	 ٠.								 													
	(iii	,	pla l no		_	-														•	, ,) a	nd	(ii)). I	f yo	ou	[2]	l

(iv)	Calculate the standard entropy change, ΔS^{\ominus} , in J K ⁻¹ , for the reaction in (ii) using section 12 of the data booklet	[1]

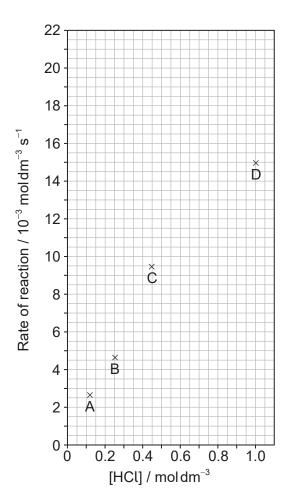
(Question 3 continued)

	(v))	[De	ete	eri	m	in	e	, :	sh	0	W	in	ıg)	/C	u	r	W	O'	rk	ir	ng	Ι,	th	e	S	р	or	nta	ar	ne	ity	y (of	th	ıe	r	ea	ac	tic	or	ı i	n	(i	i)	a	t 2	25	°	C.		ļ	[3]
					٠			•			٠	•										•												٠		٠	•		٠	•		•	-		٠								٠.		
																																											-												
	 																																										_												

(d) One possible Lewis structure for benzene is shown.

_	_									_																								_				_	_					_
						-																						 												-				

4. Calcium carbonate reacts with hydrochloric acid.


$$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$$

(a) Outline **two** ways in which the progress of the reaction can be monitored. No practical details are required.

[2]

	-	 •		٠		•	•	 ٠	٠		•	•	•	•		٠	٠	•		•	•		 •	٠	•	 	•	•		-	٠	•	 •	٠	•	 	•	•		•	٠		
															 				 							 										 						 •	

(b) The results of a series of experiments in which the concentration of HCl was varied are shown below.

^	4	4 *	
LILIDETIAN	$\Lambda C $	antinii	$\Delta \alpha 1$
Question	7 6	JIILIIIU	cui
			,

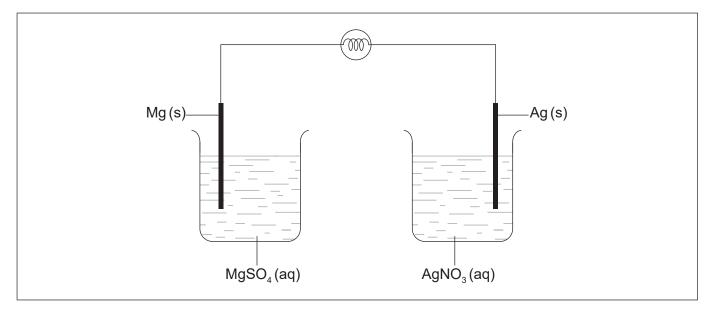
((i)	Suggest why point D is so far out of line assuming human error is not the cause.	[1]
((ii)	Draw the best fit line for the reaction excluding point D.	[1]
((iii)	Suggest the relationship that points A, B and C show between the concentration of the acid and the rate of reaction.	[1]
((iv)	Deduce the rate expression for the reaction.	[1]
((v)	Calculate the rate constant of the reaction, stating its units.	[2]
		ict from your line of best fit the rate of reaction when the concentration of HCl is $$ mol $$ dm $^{-3}$.	[1]

Turn over

Question 4 continued)	iued)	contin	4	uestion	Q
-----------------------	-------	--------	---	---------	---

 (d)	Describe how the activation energy of this reaction could be determined.	[3]
	escale, $CaCO_3$ (s), can be removed from water kettles by using vinegar, a dilute solution hanoic acid, CH_3COOH (aq).	
(a)	Predict, giving a reason, a difference between the reactions of the same concentrations of hydrochloric acid and ethanoic acid with samples of calcium carbonate.	[2]
(b)	Dissolved carbon dioxide causes unpolluted rain to have a pH of approximately 5, but	
(/	other dissolved gases can result in a much lower pH. State one environmental effect of acid rain.	[1]
	·	[1]
	·	[1]

(Question 5 continued)


(c)	Write an equation to show ammonia, $\mathrm{NH_3}$, acting as a Brønsted–Lowry base and a different equation to show it acting as a Lewis base.	[2]
Brøi	nsted–Lowry base:	
Lew	is base:	
(d)	Determine the pH of 0.010 mol dm ⁻³ 2,2-dimethylpropanoic acid solution.	
	$K_{\rm a}$ (2,2-dimethylpropanoic acid) = 9.333×10^{-6}	[2]
(e)	Explain, using appropriate equations, how a suitably concentrated solution formed by the partial neutralization of 2,2-dimethylpropanoic acid with sodium hydroxide acts as a buffer solution.	[2]

Turn over

[1]

6. The diagram shows an incomplete voltaic cell with a light bulb in the circuit.

(a)	Identify the missing component of the cell and its function.	[2

(b)	Deduce the half-equations for the reaction at each electrode when current flows.	[2]
Pos	sitive electrode (cathode):	

Negative electrode (anode):	

- (c) Annotate the diagram with the location and direction of electron movement when current flows.
- (d) Calculate the cell potential, in V, using section 24 of the data booklet. [1]

	(e)	Determine the loss in mass of one electrode if the mass of the other electrode increases by 0.10 g.	[2]
7.	This	question is about the reactions of halogenoalkanes.	
	(a)	Compare and contrast the mechanisms by which 1-chlorobutane, $CH_3CH_2CH_2CI$, and 2-chloro-2-methylpropane, $(CH_3)_3CCI$, react with aqueous sodium hydroxide, giving two similarities and one difference.	[3]
	Two	similarities:	
	One	difference:	
	(b)	Outline why the rate of reaction of the similar bromo-compounds is faster.	[1]

Turn over

Question	7	continued	1
Question	•	Continuca	•

(c)	(1)	CH ₃ CH ₂ CH ₂ Cl, and aqueous sodium hydroxide.	[1]
	(ii)	Suggest how this product could be synthesized in one step from butanoic acid.	[1]
	(iii)	Deduce the name of the class of compound formed when the product of (c)(i) reacts with butanoic acid.	[1]

Please **do not** write on this page.

Answers written on this page will not be marked.

Please **do not** write on this page.

Answers written on this page will not be marked.

24FP24