

Chemistry Higher level Paper 2

Monday 14 November 2016 (morning)

	Car	ıdida	te se	ssior	num	nber	

2 hours 15 minutes

Instructions to candidates

- · Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- · Answer all questions.
- Write your answers in the boxes provided.
- A calculator is required for this paper.
- A clean copy of the **chemistry data booklet** is required for this paper.
- The maximum mark for this examination paper is [95 marks].

24EP01

International Baccalaureate Baccalaureate Baccalaureat International Bachillerato Internacional

Answer all questions. Write your answers in the boxes provided.

- **1.** Ethane-1,2-diol, HOCH₂CH₂OH, has a wide variety of uses including the removal of ice from aircraft and heat transfer in a solar cell.
 - (a) Ethane-1,2-diol can be formed according to the following reaction.

$$2CO(g) + 3H_2(g) \rightleftharpoons HOCH_2CH_2OH(g)$$

	(i)	Deduce the equilibrium constant expression, K_c , for this reaction.	[1]
	(ii)	State how increasing the pressure of the reaction mixture at constant temperature will affect the position of equilibrium and the value of K_c .	[2]
Pos	ition c	of equilibrium:	

K _c :			

(iii) Calculate the enthalpy change, ΔH^{\ominus} , in kJ, for this reaction using section 11 of the data booklet. The bond enthalpy of the carbon–oxygen bond in CO(g) is 1077 kJ mol⁻¹.

[3]

(Question 1 continued)

(b)	(i)	Calculate ΔH^{\ominus} , in kJ, for this similar reaction below using ΔH^{\ominus}_{f} data from section 12 of the data booklet. ΔH^{\ominus}_{f} of HOCH ₂ CH ₂ OH(l) is -454.8 kJ mol ⁻¹ .	[1]
		$2CO(g) + 3H_2(g) \rightleftharpoons HOCH_2CH_2OH(l)$	
	(ii)	Deduce why the answers to (a)(iii) and (b)(i) differ.	[1]
	(iii)	ΔS^{\ominus} for the reaction in (b)(i) is $-620.1\mathrm{JK^{-1}}$. Comment on the decrease in entropy.	[1]
	(iv)	Calculate the value of ΔG^{\ominus} , in kJ, for this reaction at 298 K using your answer to (b)(i). (If you did not obtain an answer to (b)(i), use -244.0 kJ, but this is not the correct value.)	[2]

Turn over

[1]

[2]

(Question	Question 1 continued)																																
	(v	•	Cor tem								tha	at	the	e re	eac	ctic	n	be	со	me	es	les	ss s	sp	on [.]	tar	nec	ou	s a	IS			
				• • •	• •			 	• •	• •	• •	• •	• •		• •	• •	• •	• •	• •	•			•		• •	• •	• •	• •	• •		• •	•	•
								 	٠.		٠.	٠.	٠.	٠.	٠.	٠.	٠.						•				٠.	٠.	٠.				
								 	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.	٠.		٠.							٠.	٠.	٠.	٠.				

(c)	Determine the average oxidation state of carbon in ethene and in ethane-1,2-diol.	[2]
Ethe	ne:	
Etha	ne-1,2-diol:	

(d)	Explain why the boiling point of ethane-1,2-diol is significantly greater than that of ethene.	[2]

Ethane-1,2-diol can be oxidized first to ethanedioic acid, $(COOH)_2$, and then to carbon dioxide and water. Suggest the reagents needed to oxidize ethane-1,2-diol. (e) [1]

(This question continues on the following page)

(Question 1 continued)

(f) Predict the ¹H NMR data for ethanedioic acid and ethane-1,2-diol by completing the table.

[2]

	Number of signals	Splitting pattern
Ethanedioic acid:		
Ethane-1,2-diol:		Not required

Turn over

2.	The concentration of a solution of a weak acid, such as ethanedioic acid, can be determined by titration with a standard solution of sodium hydroxide, NaOH(aq).

(a) Distinguish between a weak acid and a strong acid.

[1]

Strong acid:	Weak acid:	
	Strong acid:	

(b)	Suggest why it is more convenient to express acidity using the pH scale instead of
	using the concentration of hydrogen ions.

[1]

[1]

(c) 5.00 g of an impure sample of hydrated ethanedioic acid, (COOH)₂•2H₂O, was dissolved in water to make 1.00 dm³ of solution. 25.0 cm³ samples of this solution were titrated against a 0.100 mol dm⁻³ solution of sodium hydroxide using a suitable indicator.

$$(COOH)_2(aq) + 2NaOH(aq) \rightarrow (COONa)_2(aq) + 2H_2O(l)$$

The mean value of the titre was 14.0 cm³.

(i) Suggest a suitable indicator for this titration. Use section 22 of the data booklet.

(ii)	Calculate the amount, in mol, of NaOH in 14.0 cm ³ of 0.100 mol dm ⁻³ solution.
(iii)	Calculate the amount, in mol, of ethanedioic acid in each 25.0 cm ³ sample.
(iv)	Determine the percentage purity of the hydrated ethanedioic acid sample.
(iv)	Determine the percentage purity of the hydrated ethanedioic acid sample.
(iv)	Determine the percentage purity of the hydrated ethanedioic acid sample.
(iv)	Determine the percentage purity of the hydrated ethanedioic acid sample.
(iv)	Determine the percentage purity of the hydrated ethanedioic acid sample.
(iv)	Determine the percentage purity of the hydrated ethanedioic acid sample.
(iv)	Determine the percentage purity of the hydrated ethanedioic acid sample.
(iv)	Determine the percentage purity of the hydrated ethanedioic acid sample.
(iv)	Determine the percentage purity of the hydrated ethanedioic acid sample.

Turn over

(Question 2 continued)

suggest a value for them. Use section 10 of the data booklet.	[2]
	• •
(f) Explain how ethanedioate ions act as ligands.	[2]

3. Sodium thiosulfate solution reacts with dilute hydrochloric acid to form a precipitate of sulfur at room temperature.

$$\text{Na}_2\text{S}_2\text{O}_3(\text{aq}) + 2\text{HCl}\left(\text{aq}\right) \rightarrow \text{S}\left(\text{s}\right) + \text{SO}_2(\text{g}) + 2\text{NaCl}\left(\text{aq}\right) + \text{X}$$

(a) Identify the formula and state symbol of X. [1]

.....

(b)	Suggest why the experiment should be carried out in a fume hood or in a	
	well-ventilated laboratory.	[1]

[2]

(Question 3 continued)

(c) The precipitate of sulfur makes the mixture cloudy, so a mark underneath the reaction mixture becomes invisible with time.

 $10.0\,\mathrm{cm^3}$ of $2.00\,\mathrm{mol\,dm^{-3}}$ hydrochloric acid was added to a $50.0\,\mathrm{cm^3}$ solution of sodium thiosulfate at temperature, T_1 . Students measured the time taken for the mark to be no longer visible to the naked eye. The experiment was repeated at different concentrations of sodium thiosulfate.

Experiment	[Na ₂ S ₂ O ₃ (aq)] / mol dm ⁻³	Time, t, for mark to disappear / s \pm 1 s	$\frac{1}{t}^* / 10^{-3} s^{-1}$
1	0.150	23	43.5
2	0.120	27	37.0
3	0.090	36	27.8
4	0.060	60	16.7
5	0.030	111	9.0

^{*} The reciprocal of the time in seconds can be used as a measure of the rate of reaction.

[Source: Adapted from http://www.flinnsci.com/]

Show that the hydrochloric acid added to the flask in experiment 1 is in excess.

[2]

(Question 3 continued)

(d) Draw the best fit line of $\frac{1}{t}$ against concentration of sodium thiosulfate on the axes provided.

(e) (i) Using the graph, explain the order of reaction with respect to sodium thiosulfate. [2]

Turn over

[2]

(Question 3 continued)

	(ii)					•			actio vera						pec	t to	[1]
(f)	sodi	uden um tl	nios	ulfa	te u	nde	•				_						
	to b	e no	long	jer \	/ISID	ie.											[2]
	to be	e no	long	jer v				 	 	 	 	 	 	 			[2]
	to be	e no	long	jer v		ie.		 	 	 	 	 	 	 			[2]
	to be	e no		jer \				 	 	 	 	 	 	 			[2]

- (g) An additional experiment was carried out at a higher temperature, T₂.
 - (i) On the same axes, sketch Maxwell–Boltzmann energy distribution curves at the two temperatures T_1 and T_2 , where $T_2 > T_1$.

(Question 3 continued)

(ii))	Ex	pla	ain	W	/hy	/ a	h	igl	he	r t	en	np	er	atı	ure	e c	aı	JS	es	tł	ne	ra	ate	е	of	re	a	cti	on	to	ir	ıcr	ea	ase	€.				[2
									-																		-										٠.	-		
		٠.																									-				•						٠.			
b) Cı	100	oot	-		ro				vh.		the	_	,			of.	ro	to		\f	ro			010		•	ht	-ir	_			hic	·h/							
. ,										-						of	ra	te	s (of	re	ac	ctio	on	ns	0	bta	air	ne	d a	at I	hig	jhe	er						[′
 										-						of	ra	te		of	re		ctio	on	ns	0	bta	air	ne	d a	at I	hig	jhe	er		_		•		[′
 										-						of	ra	te		of	re		ctio	on		o	bta	air	ne	d a	at I	hig)he	er						[′
. ,										-						of 	ra	te:		of	re			on		o	bta	air	ne	d 6	at	hig)he	er						[′

Turn over

	gnesium is a group 2 m npounds.	etal which exists as a	number of isotopes and f	orms many
(a)	State the nuclear syr	mbol notation, ${}_{z}^{A}X$, for	magnesium-26.	
(b)	Mass spectroscopic	analysis of a sample	of magnesium gave the fol	lowing results:
			% abundance	
		Mg-24	78.60	
		Mg-25	10.11	
		Mg-26	11.29	
(c)	electromagnetic spec		absorption lines in the visit most magnesium compour the flame.	
(c)	electromagnetic spec	ctrum. Suggest why r	most magnesium compour	
(c)	electromagnetic spec	ctrum. Suggest why r	most magnesium compour	

(Question	1 4 co	ntinued)
(d)	(i)	Explain the convergence of lines in a h

(d) (i) Explain the convergence of lines in a hydrogen emission spectrum.	[1]
(ii) State what can be determined from the frequency of the convergence limit.	[1]
(e) Magnesium burns in air to form a white compound, magnesium oxide. Formulate an equation for the reaction of magnesium oxide with water.	[1]
(f) Describe the trend in acid-base properties of the oxides of period 3, sodium to chlorine.	[2]
(g) In addition to magnesium oxide, magnesium forms another compound when burned in air. Suggest the formula of this compound.	[1]

Turn over

(h) Describe the structure and bonding in solid magnesium oxide.	[2]
(i) Magnesium chloride can be electrolysed.	
(i) Deduce the half-equations for the reactions at each electrode when molten magnesium chloride is electrolysed, showing the state symbols of the products. The melting points of magnesium and magnesium chloride are 922 K and 987 K respectively.	[2]
Anode (positive electrode):	
Cathode (negative electrode):	
(ii) Identify the type of reaction occurring at the cathode (negative electrode).	[1]
(iii) State the products when a very dilute aqueous solution of magnesium chloride is electrolysed.	[2]
Anode (positive electrode):	
Cathode (negative electrode):	

(Question 4 continued)

(j)	Standard electrode potentials are measured relative to the standard hydrogen electrode. Describe a standard hydrogen electrode.	[2]
(k)	A magnesium half-cell, Mg(s)/Mg $^{2+}$ (aq), can be connected to a copper half-cell, Cu(s)/Cu $^{2+}$ (aq).	
	(i) Formulate an equation for the spontaneous reaction that occurs when the circuit is completed.	[1]
	(ii) Determine the standard cell potential, in V, for the cell. Refer to section 24 of the data booklet.	[1]
	(iii) Predict, giving a reason, the change in cell potential when the concentration of copper ions increases.	[2]

Turn over

opane:	
ppene:	
(i) Draw diagrams to show how sigma (σ) and pi (π) bonds are formed between atoms.	
ıma (σ):	
(π).	
3	

(Question 5 continued)

(ii)	State the number of sigma (σ) and pi (π) bonds in propane and propene.	[2]
()		L

	Number of sigma (σ) bonds	Number of pi (π) bonds
Propane		
Propene		

(C) Both	propane	and pro	pene react	with	bromine
١	_	,	p. opao	aa p. o	poo . oac		~. ~

		(1))		SI W											n	е	C	O	no	αı	TIC	or	וו	re	p	ui	re	eo	ΙT	OI	rτ	n	е	re	ea	Cī	Ю	n	O	[[ır	nc)I	0	Γ¢	oro	эp	а	ne	,	[[2]
								-							 																			-																			
															 		•						•																						•								
				•				-		•			•		 		•			•			•	•				•	•					-		•			•						•		•						
	•			•		 •	•		 •	•	•		•	•	 	•	•	•		•			•	•	•			•	•			•	•			•		•	•		•	•		•	•		•	•		•			
												_																																						_	_		

		(ii))	į	St	at	е	aı	n	ec	qι	ıa	tic	or	ı f	O	r t	h	е	r	ea	ac	cti	OI	n	0	f	1	m	ol	c	of	p	ro	р	er	ne	٧	/it	h	11	n	ol	0	fk	oro	or	ni	ne	Э.				[1]
	•			•		•		•	•		•	•		•	•	•		•	•	•	•	•		•	•	•	•		• •	•	•		•	•	•	• •	•		•	• •	•	•		•		•	•	•	•	•	 ٠			
	•			•		•		•	•		•	•		•	•	•		•	•	•	•			•	•	•	•			•	•		•	•			•		•	•	•	•		•		•	•		•	•	 •	٠.		

/iii\	State the type of each reaction with bromine.	[1

Propane:
Propene:

Turn over

(Question 5 continued)

(d)	Construct the mechanism of the formation of 2-bromopropane from hydrogen bromide and propene using curly arrows to denote the movement of electrons.	[3]

6.	One	One structural isomer of C ₄ H ₉ Br is a chiral molecule.					
	(a)	Draw the three-dimensional shape of each enantiomer of this isomer showing their spatial relationship to each other.	[2]				
	(b)	When one enantiomer undergoes substitution by alkaline hydrolysis approximately 75% of the product molecules show inversion of configuration. Comment on the mechanisms that occur.	[2]				
	(c)	Suggest why the rate of alkaline hydrolysis of an enantiomer of iodopropane is greater than that of an enantiomer of bromopropane.	[1]				

- 7. This question is about the weak acid methanoic acid, HCOOH.
 - (a) Calculate the pH of $0.0100\,\mathrm{mol\,dm^{-3}}$ methanoic acid stating any assumption you make. $K_a = 1.6 \times 10^{-4}$.

[3]

Calculation:	
Assumption:	

(b) (i) Sketch a graph of pH against volume of a strong base added to a weak acid showing how you would determine pK_a for the weak acid.

[2]

(Question 7 continued)

(II)	Explain, using an equation, why the pH increases very little in the buffer region when a small amount of alkali is added.	[2]

Please do not write on this page.

Answers written on this page will not be marked.

24FP24