

Chemistry Higher level Paper 2

Friday 13 November 2015 (afternoon)

	Car	ıdida	te se	ssior	1	num	nber	

2 hours 15 minutes

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Section A: answer all questions.
- Section B: answer two questions.
- Write your answers in the boxes provided.
- A calculator is required for this paper.
- A clean copy of the **chemistry data booklet** is required for this paper.
- The maximum mark for this examination paper is [90 marks].

[2]

[1]

Section A

Answer all questions. Write your answers in the boxes provided.

1. A student used the technique of titration to determine the concentration of ascorbic acid $(C_6H_8O_6)$ in a sample of orange juice. Excess potassium iodide, KI (aq), was added to acidified orange juice. The resulting solution was titrated with potassium iodate, KIO $_3$ (aq), in the presence of starch as an indicator. The end-point of the titration was shown by a blue-black colour.

Step 1
$$IO_3^-(aq) + 5I^-(aq) + 6H^+(aq) \rightarrow 3I_2(aq) + 3H_2O(l)$$

lodine is only slightly soluble in water; but in the presence of excess iodide ions, I^- (aq), it forms the soluble tri-iodide ion, I_3^- (aq).

Step 2
$$I_2(aq) + I^-(aq) \rightleftharpoons I_3^-(aq)$$

Ascorbic acid reacts with tri-iodide ions as follows.

Step 3
$$C_6H_8O_6(aq) + I_3^-(aq) \rightarrow C_6H_6O_6(aq) + 2H^+(aq) + 3I^-(aq)$$

(a) (i) Deduce the changes in oxidation number of iodine in step 1.

${\rm IO_3}^-$ to ${\rm I_2}$:	
${\rm I}^{\scriptscriptstyle -}$ to ${\rm I}_{\rm 2}$:	

(ii) Identify the oxidizing and reducing agents in step 1.

Oxidizing age	nt:		
Reducing age	ent:		

(Question 1 continued)

)	().2	ale 25	C(ال) (a dr	te	3	th	of	9	r a	n 2	2). (38)(3,)	, >	ir <	า 1	9))	-3	o n	f n	p)()(O1	ta Ir	as m	ร: า	S -3	i	u s	ır	n ol	u	ti	ic	da or	ล† า.	te	Э,	,	K	.1	С	3	(\$	3)	,	W	/r	110	Cľ	1	W	/a	ıs	;	re	90	Įι	İ	re	90	b	t	0	ŗ	or	е	p	а	ır	е	
	_														_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_																																													
													٠																																																																

(c) The concentration of ${\rm KIO_3}$ used in the titration was $2.00\times 10^{-3}\,{\rm mol\,dm^{-3}}$. The titration produced the following results.

	Titration 1	Titration 2	Titration 3
Final volume of KIO ₃ (± 0.05 cm ³)	7.10	14.40	21.60
Initial volume of KIO ₃ (± 0.05 cm ³)	0.00	7.10	14.40
Volume added of KIO ₃ (± 0.10 cm ³)	7.10	7.30	7.20
Mean volume added of KIO ₃ (± 0.10 cm ³)		7.20	

(i)	Calculate the percentage uncertainty associated with the mean volume of ${\rm KIO_3}({\rm aq}).$	[1]
(ii)	The colour of orange juice interfered with the blue-black colour at the equivalence point. State the name of this type of error and suggest how this can be minimized.	[2]
	1111111111204.	[-]

(This question continues on the following page)

Turn over

	[1]
lified	[2]
	[1]

[3]

(Question 1 continued)

(f) The student found by further experimentation that oxidation of ascorbic acid follows first-order kinetics. The graph of $\ln k$ against $\frac{1}{T}$ is shown below. Determine the activation energy to **three** significant figures, including units.

•	•	•	•	•		•				 	•	•	•	٠	٠	٠	•	٠	٠	٠	•	•	•	•	 	•	•	٠	•	٠	٠	•	-	 	٠	•	•	٠	٠	٠	٠	٠	•	 	•	٠	٠	٠	٠	٠	•	 	 •	٠	
										 															 									 										 						-		 			
										 															 								-	 										 		-					-	 			
					-					 															 									 										 							-	 			
										 															 						٠		-	 							٠			 							-	 			
										 									٠						 									 										 		-					-	 			
										 															 				٠				-	 										 		-		-	-	-	-	 			

(a)	State the full electron configurations of copper, Cu, and copper(II) ion, Cu ²⁺ .
(b)	Cu^{2+} (aq) reacts with ammonia to form the complex ion $[Cu(NH_3)_4]^{2+}$. Explain this reaction in terms of acid-base theory, and outline the bonding in the complex formed between Cu^{2+} and NH_3 .
(c)	Explain why complexes of Zn ²⁺ (aq) are colourless whereas complexes of Cu ²⁺ (aq) are coloured.
(c)	Explain why complexes of Zn ²⁺ (aq) are colourless whereas complexes of Cu ²⁺ (aq) are coloured.
(c)	Explain why complexes of Zn ²⁺ (aq) are colourless whereas complexes of Cu ²⁺ (aq) are coloured.
(c)	Explain why complexes of Zn²+ (aq) are colourless whereas complexes of Cu²+ (aq) are coloured.
(c)	Explain why complexes of Zn ²⁺ (aq) are colourless whereas complexes of Cu ²⁺ (aq) are coloured.
(c)	are coloured.
(c)	are coloured.
(c)	are coloured.
(c)	are coloured.
(c)	are coloured.

3.

	pane, $C_3H_8(g)$, undergoes complete combustion to form carbon dioxide, $CO_2(g)$, and er, $H_2O(g)$.	
(a)	State an equation for the complete combustion of propane, $C_3H_8(g)$.	[1]
(b)	Calculate the standard enthalpy change for the reaction in part (a) using bond enthalpy	
	values given in table 10 of the data booklet.	[3]
	values given in table 10 of the data booklet.	[3]
	values given in table 10 of the data booklet.	[3]
	values given in table 10 of the data booklet.	[3]
	values given in table 10 of the data booklet.	[3]
	values given in table 10 of the data booklet.	[3]
	values given in table 10 of the data booklet.	[3]

(a)	The monomers hexanedioic acid and 1,6-diaminohexane react together to form a synthetic polymer.	
	Deduce the structural formula of each monomer.	[2
(b)	State the type of polymerization reaction that occurs between these two monomers and identify the structural feature needed in the monomers.	[2
	Type:	
	Structural feature:	
(c)	Draw the structure of the linkage formed in this polymer, and identify the other product of this polymerization reaction.	[2

(a)	(i)	Define the term electronegativity.	[
	(ii)	Suggest why the noble gases are generally not assigned electronegativity values.	
(b)		ain why the melting points of the group 1 metals (Li \to Cs) decrease down the group reas the melting points of the group 7 elements (F \to I) increase down the group.	
(c)	Outl	ine one reason why the sodium ion, Na ⁺ , has a smaller radius than the sodium n.	

Turn over

[2]

Section B

Answer two questions. Write your answers in the boxes provided.

- 6. Iron (III) oxide is the main source of iron but the decomposition of $Fe_2O_3(s)$ into its elements is extremely difficult due to a large positive value of ΔG^{\ominus} .
 - (a) Consider the following reactions:

$$\begin{split} \text{Fe}_2 \text{O}_3(\text{s}) &\to 2 \text{Fe}(\text{s}) + \frac{3}{2} \text{O}_2(\text{g}) & \Delta G^\ominus = +742 \, \text{kJ} \, \text{mol}^{-1} \\ \text{CO}(\text{g}) &+ \frac{1}{2} \text{O}_2(\text{g}) \to \text{CO}_2(\text{g}) & \Delta G^\ominus = -257 \, \text{kJ} \, \text{mol}^{-1} \end{split}$$

Suggest, with a reason, whether it is possible to produce iron by reacting Fe₂O₃ with CO. [2]

(b) The thermite reaction is one of the most exothermic reactions.

$$Fe_2O_3(s) + 2Al(s) \rightarrow 2Fe(l) + Al_2O_3(s)$$
 $\Delta H^{\ominus} = -825.2 \text{ kJ}$

Species	S [⊕] / J K ⁻¹ mol ⁻¹	∆ G [⊖] _f / kJ mol ⁻¹
Al(s)	+28.3	0
Al ₂ O ₃ (s)	+50.9	-1582
Fe(l)	+34.8	+10.0
Fe ₂ O ₃ (s)	+87.5	-742

(i) Calculate the standard free energy change, ΔG^{\ominus} , in kJ mol⁻¹, by using values of the standard free energy change of formation, $\Delta G^{\ominus}_{\mathfrak{f}}$, from the table above.

 ٠.	-	 	 ٠	 ٠	-		٠	-			٠	 ٠	 ٠		٠	-	 ٠				 -		 -	٠	
 		 																							,
 		 						_								_		 							

(Question 6 continued)

(ii)	Calculate the standard entropy, S	ard entropy change, and entropy change, and entropy change.	∆S [∾] , in JK⁻¹mol⁻¹, by	y using values of	
(iii)	Calculate the standa ΔS° values at 25°C	ard free energy chan	ge, $\Delta oldsymbol{G}^\ominus$, for the reac	ction using ΔH^Θ and	
					• •
(i)	Deduce the type of	hybridization shown l	by the nitrogen atom	s in NF $_4^+$, N $_2$ H $_2$ and	
(i)	Deduce the type of N_2H_4 .	hybridization shown	by the nitrogen atom N_2H_2	s in NF_4^+ , N_2H_2 and N_2H_4]
(i)			T	, I	
(i) (ii)	N ₂ H ₄ . Hybridization		N ₂ H ₂	, I	
	Hybridization Describe how sigma	NF ₄ ⁺	N ₂ H ₂	N ₂ H ₄]
	Hybridization Describe how sigma	NF_4^+	N ₂ H ₂	N ₂ H ₄	
	Hybridization Describe how sigma	NF_4^+ a (σ) and pi (π) bonds	N ₂ H ₂	N ₂ H ₄	
	Hybridization Describe how sigma	NF_4^+ (σ) and pi (π) bonds	N ₂ H ₂	N ₂ H ₄	
	Hybridization Describe how sigma	NF_4^+ (σ) and pi (π) bonds	N ₂ H ₂	N ₂ H ₄	

(This question continues on the following page)

Turn over

(Question 6 continued)

(iii)	Draw the Lewis (electron dot) structures of SF ₄ and SF ₆ . Use the valence shell electron pair repulsion (VSEPR) theory to predict the name of the shape of each molecule.
(i)	List the following compounds in order of increasing boiling point: CH ₃ CHO, CH ₃ CH ₂ CH ₃ , CH ₃ COOH, CH ₃ CH ₂ OH.
(ii)	Explain the order of boiling points in the compounds listed in part (d) (i), in terms of intermolecular forces.

(Question 6 continued)

(e)	detection. State the names of the other three stages and outline what happens in each one.	[3]

Turn over

7. (a) The following reaction is used in industry to obtain hydrogen from natural gas by partial oxidation with steam.

$$CH_4(g) + H_2O(g) \rightleftharpoons 3H_2(g) + CO(g)$$
 $\Delta H^{\ominus} = +206 \text{ kJ}$

(i) Describe the effect, if any, of each of the following changes on the equilibrium amount of hydrogen, giving a reason in each case.

[4]

	Ir	ıc	cr	е	а	S	ir	ıç)	tŀ	ıe	è	р	re	98	35	sı	ır	е	<u>,</u>	ć	at	t	С	Ю	r	1	s	tá	а	r	nt	: 1	te	er	r	ηŗ)(Э	ra	al	ι	ır	·e):																
																								٠																					-							 						٠			
	lr	ıc	cr	е	а	s	ir	ıç)	th	ıe	,	te	er	n	р	е	ra	a	tι	11	Æ	Э,	, (а	t	(C	0	r	าร	si	ta	ar	1	t	p	r	е	S	S	l	ır	·e):																
														٠																																						 									
																								•																									•		•	 	•	•				•			
-												_												_																				_	_																_

(ii) Discuss the effects of adding a solid catalyst to the mixture of methane and steam, at constant pressure and temperature.

[3]

٠	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•		 •	•		 	
											-																																												 	

(iii) Deduce the equilibrium constant expression, K_c , for the reaction.

[1]

(Question 7 continued)

(IV)	the value will increase or decrease.	[1]

(b) The equilibrium constant, K_c , for the reaction

$$CO(g) + H_2O(g) \rightleftharpoons H_2(g) + CO_2(g)$$

was found to be 10.0 at 420°C.

1.00 mol of CO(g) and 1.00 mol of $\rm H_2O(g)$ are mixed in a 1.00 dm³ container at 420°C. Calculate the equilibrium concentration of each component in the mixture, showing your working.

[3]

Turn over

[2]

(Question 7 continued)

(c) The oxidation of nitrogen monoxide takes place as follows:

$$2NO\left(g\right)+O_{_{2}}(g)\rightarrow2NO_{_{2}}(g)$$

The following experimental data was obtained at 101.3 kPa and 298 K.

Experiment	Initial [NO] / mol dm ⁻³	Initial [O₂] / mol dm ⁻³	Initial rate / mol dm ⁻³ s ⁻¹
1	2.30×10^{-2}	1.15 × 10 ⁻²	1.05×10^{-3}
2	2.30×10^{-2}	2.30×10^{-2}	2.09×10^{-3}
3	4.60 × 10 ⁻²	4.60×10^{-2}	1.68 × 10 ⁻²

(i)	Deduce the orders of reaction with respect to O ₂ and NO.	[2]
	Order with respect to O ₂ :	
	Order with respect to NO:	
(ii)	State the rate expression for the reaction.	[1]

Calculate the value of the rate constant, *k*, and include its units.

(This question continues on the following page)

(iii)

(Question 7 continued)

(iv) Suggest a mechanism that is consistent with the rate expression, indicating the rate-determining step.

[3]

(d) Consider the following spontaneous reactions.

$$Fe(s) + Ni^{2+}(aq) \rightarrow Fe^{2+}(aq) + Ni(s)$$

$$Zn(s) + Fe^{2+}(aq) \rightarrow Zn^{2+}(aq) + Fe(s)$$

$$Ni(s) + Pb^{2+}(aq) \rightarrow Ni^{2+}(aq) + Pb(s)$$

(i) Deduce the order of **increasing** reactivity of the metals based on the reactions above.

[2]

(ii) Identify the strongest oxidizing agent in the reactions above. [1]

Turn over

Deduce the half-equations for the formation of the major product at the positive

(Question 7 continued)

 electrode (anode) when the following aqueous solutions are electrolysed.	[2]
Dilute sodium chloride:	
Concentrated sodium chloride:	

Please do not write on this page.

Answers written on this page will not be marked.

Turn over

8. (a) 20.0 cm³ aqueous solutions of two bases, each with a concentration of 0.100 mol dm⁻³ were separately titrated with 0.100 mol dm⁻³ hydrochloric acid, HCl (aq), and the following graph was obtained.

(Question 8 continued)

(i)	Deduce the pH at the equivalence points for base I and base II.	[2]
(ii)	Suggest why the titration curve for base I is different from base II.	[1]
(iii)	State the formulas of two possible bases which could be used as base I.	[1]
(iv)	Calculate, using data from the graph, the dissociation constant, $K_{\rm b}$, of base II, showing your working.	[3]
(v)	Suggest an indicator that can be used for both titrations.	[1]

Turn over

(Question 8 continued)

(b)

i) 	State what is meant by the term buffer solution.	[
i)	Calculate the pH of a solution prepared by mixing $40.0\mathrm{cm^3}$ of $0.200\mathrm{moldm^{-3}}$ NH $_3$ (aq) and $40.0\mathrm{cm^3}$ of $0.100\mathrm{moldm^{-3}}$ HCl(aq), showing your working. (p K_b NH $_3$ = 4.75 at $298\mathrm{K}$)	
i)	NH_3 (aq) and 40.0 cm ³ of 0.100 mol dm ⁻³ HCl (aq), showing your working.	
i)	NH_3 (aq) and 40.0 cm ³ of 0.100 mol dm ⁻³ HCl (aq), showing your working.	
i)	NH_3 (aq) and 40.0 cm ³ of 0.100 mol dm ⁻³ HCl (aq), showing your working.	

(c) The equations of two acid-base reactions are given below.

Reaction
$$\mathbf{A}$$
 $H_2CO_3(aq) + H_2O(l) \rightleftharpoons HCO_3^-(aq) + H_3O^+(aq)$

Reaction **B**
$$HCO_3^-(aq) + H_2O(l) \rightleftharpoons CO_3^{2-}(aq) + H_3O^+(aq)$$

(i) Explain whether $HCO_3^-(aq)$ behaves as an acid or a base in each of the reactions **A** and **B**.

[2]

Reaction A	A :		
Reaction E	3:		

[2]

[1]

(Question 8 continued)

(i)

4	(ii)	Deduce two		aaid baaa	maira fram	rocotiono M	
1	(11)	Dealice two	conmoare	acio-base	Dails Hon	reachons 🖴	lano b
- 1	(''')	Doddoo tii o	conjugato	acia bacc	pano non	1 100010110 1	. and - .

	Acid	Base
Conjugate acid-base pair 1		
Conjugate acid-base pair 2		

(d)	Nitric acid, HNO ₃ , and nitrous acid, HNO ₂ , are described as strong and weak	acids
	espectively.	

Distinguish between strong and weak acids.

(ii)	A 1.00 g sample of solid magnesium carbonate, $MgCO_3$, is added to separate solutions of HNO_3 and HNO_2 of the same concentration and temperature. State one similarity and one difference in the observations made in these reactions. [2]
	Similarity:

(This question continues on the following page)

Difference:

Turn over

(Question 8 continued)

(iii)	A solution of HNO ₃ has a pH of 1, while a solution of HNO ₂ has a pH of 5. Determine the ratio of the hydrogen ion concentration in HNO ₃ :HNO ₂ .	[1]	
i)	State the acid-base character of the oxides of the period 3 elements Na to Ar.	[2	
(ii)	State balanced equations to illustrate the acid-base character of sodium oxide and sulfur trioxide.	[2	
	Sodium oxide:		
	Sulfur trioxide:		
	i)	Determine the ratio of the hydrogen ion concentration in HNO ₃ :HNO ₂ . State the acid-base character of the oxides of the period 3 elements Na to Ar. State balanced equations to illustrate the acid-base character of sodium oxide and sulfur trioxide. Sodium oxide:	

1.35 exce	A 0.842g sample of a liquid halogenoalkane, RBr(l), was heated under reflux with 1.35×10^{-2} mol of aqueous sodium hydroxide, NaOH (aq). After cooling the mixture, the excess NaOH was titrated with hydrochloric acid, HCl (aq), and required 7.36×10^{-3} mol of the acid.					
(i)	State the equation for the substitution reaction of the halogenoalkane with sodium hydroxide.					
(ii)	Calculate the amount, in mol, of sodium hydroxide that reacted with the halogenoalkane.					
(iii)	Calculate the molar mass of the halogenoalkane.					
(iv)	Given that each molecule of the halogenoalkane contains one bromine atom, determine its molecular formula.					

(This question continues on the following page)

9.

Turn over

(Question 9 continued)

(b)

(v)	Deduce the structural formulas of four structural isomers of the halogenoalkane based on the molecular formula and label each isomer as primary, secondary or tertiary.	[4]
	(If you have not been able to determine the molecular formula in part (a) (iv), use $C_5H_{11}Br$ to deduce the four structural isomers.)	
	reaction between a primary halogenoalkane drawn in part (a) (v) and potassium ide follows a $\rm S_{N}2$ mechanism.	
(i)	State the importance of this reaction in organic synthesis.	[1]

(Question 9 continued)

(c)

(ii)	Explain the mechanism of the reaction using curly arrows to represent the movement of electron pairs.	[4]
(iii)	The organic product obtained in part (b) (ii) can be reduced to form an amine. State an equation for this reaction and a suitable catalyst.	[2]
	reaction between the primary halogenoalkane, obtained in part (a) (v), and hot, centrated alcoholic NaOH is an example of an elimination reaction.	
(i)	Explain the mechanism of the elimination reaction using curly arrows to represent the movement of electron pairs.	[4]

(This question continues on the following page)

Turn over

(Question 9 continued)

Secti Ethane car	e of polymerization: tion of polymer:
Ethane car	tion of polymer:
Ethane car	tion of polymer:
	any necessary reaction conditions.

