

Chemistry Higher level Paper 2

Thursday 14 May 2015 (afternoon)

		Car	idida	te se	SSIO	ı nun	iber	
Γ								
L								

2 hours 15 minutes

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- Section A: answer all questions.
- Section B: answer two questions.
- Write your answers in the boxes provided.
- A calculator is required for this paper.
- A clean copy of the **chemistry data booklet** is required for this paper.
- The maximum mark for this examination paper is [90 marks].

245004

Section A

Answer all questions. Write your answers in the boxes provided.

1. Ethanedioic acid is a diprotic acid. A student determined the value of x in the formula of hydrated ethanedioic acid, HOOC–COOH•xH₂O, by titrating a known mass of the acid with a 0.100 mol dm⁻³ solution of NaOH (aq).

0.795 g of ethanedioic acid was dissolved in distilled water and made up to a total volume of 250 cm³ in a volumetric flask.

25 cm³ of this ethanedioic acid solution was pipetted into a flask and titrated against aqueous sodium hydroxide using phenolphthalein as an indicator.

The titration was then repeated twice to obtain the results below.

Volume of 0.100 mol dm ⁻³ NaOH / cm ³	Titration 1	Titration 2	Titration 3
Final burette reading (± 0.05)	13.00	25.70	38.20
Initial burette reading (± 0.05)	0.00	13.00	25.70
Volume added			

(a)	Calculate the average volume of NaOH added, in cm ³ , in titrations 2 and 3, and then calculate the amount, in mol, of NaOH added.	[2

(Question 1 continued)

(b') (i)	The equation	for the	reaction	taking	place	in the	titration	is:
۱	-	, (.,					P.O			

 $HOOC-COOH(aq) + 2NaOH(aq) \rightarrow NaOOC-COONa(aq) + 2H_2O(l)$

Determine the amount, in mol, of ethanedioic acid that reacts with the average volume of $\mbox{NaOH}(\mbox{aq}).$

[1]

(ii) Determine the amount, in mol, of ethanedioic acid present in 250 cm³ of the original solution.

[1]

(iii) Determine the molar mass of hydrated ethanedioic acid.

[1]

٠.	 ٠		٠	•	 	•	•	 •	٠	•	 •	٠	٠	 	٠	•	 ٠	٠		٠	٠	 •	•		٠	٠		٠	٠	 •	•	 ٠	٠	

(iv) Determine the value of x in the formula $HOOC-COOH \bullet xH_2O$.

[2]

(c) Identify the strongest intermolecular force in solid ethanedioic acid.

[1]

(This question continues on the following page)

Turn over

(Question	1	continued)
-----------	---	------------

(d)	Deduce the Lewis (electron dot) structure of ethanedioic acid, HOOC–COOH.	[1]
(-)		
(e)	Predict and explain the difference in carbon-oxygen bond lengths in ethanedioic acid and its conjugate base, <code>-OOC-COO-</code> .	[3]

(a)		e the equations for the e with water.	reactions of sodium oxide with w	rater and phosphorus(V)	[2]
(b)	(i)		ting point of phosphorus(V) oxide ir bonding and structure.	is lower than that of sodium	[2]
	(ii)		sphorus(V) oxide and sodium oxides. Complete the boxes with "ye		[2]
			Phosphorus(V) oxide	Sodium oxide	
		Solid state			

	Phosphorus(V) oxide	Sodium oxide
Solid state		
Molten state		

(This question continues on the following page)

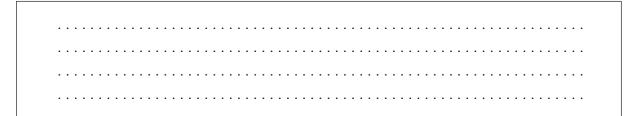
2.

Turn over

(Question 2 continued)

(c)	Predict and explain the pH of the following aqueous solutions, using equations to	
	support your answer.	[4]

Ammonium	n chloride, NH ₄ C	l (aq):	
Sodium me	ethanoate, HCO	ONa (aq):	


3. The rate of reaction is an important factor in industrial processes such as the Contact process to make sulfur trioxide, $SO_3(g)$.

(a)	Define the term <i>rate of reaction</i> .	[1]
(b)	Describe the collision theory.	[3]

(c) The Contact process involves this homogeneous equilibrium:

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$
 $\Delta H = -198 \text{ kJ}$

(i) State and explain how increasing the pressure of the reaction mixture affects the yield of SO_3 . [2]

Turn over

(Question 3 continued)

(d)

(ii)	2.00 mol of $SO_2(g)$ are mixed with 3.00 mol of $O_2(g)$ in a 1.00 dm ³ container until
	equilibrium is reached. At equilibrium there are 0.80 mol of SO ₃ (g).

	Determine the equilibrium constant ($K_{\rm c}$) assuming all gases are at the same temperature and pressure.	[4]
(iii)	State the effect of increasing temperature on the value of $K_{\rm c}$ for this reaction.	[1]
Outli	ine the economic importance of using a catalyst in the Contact process.	[2]

Copper is a metal that has been used by humans for thousands of years. State the full electron configuration of $^{\rm 65}{\rm Cu}.$ [1] State one difference in the physical properties of the isotopes ⁶³Cu and ⁶⁵Cu and (b) explain why their chemical properties are the same. [2] Physical: Chemical: [2] (c) Describe the bonding in solid copper.

[3]

[4]

Section B

Answer two questions. Write your answers in the boxes provided.

5. Ethanol has many industrial uses.

(a)	State an equation for the formation of ethanor from etherie and the necessary
	reaction conditions.

Equation:
Conditions:

(b)	(i)	Define the term average bond enthalpy.	[2]

(ii) Ethanol can be used as a fuel. Determine the enthalpy of combustion of ethanol at 298 K, in kJ mol⁻¹, using the values in table 10 of the data booklet, assuming all reactants and products are gaseous.

(Question 5 continued)

(c)		dents can also measure the enthalpy of combustion of ethanol in the laboratory g calorimetry. Suggest the major source of systematic error in these procedures.	[1]
(d)		e the equation for the acid-catalysed reaction of ethanol with propanoic acid and e the name of the organic product.	[2]
	Equ	ation:	
	Nan	ne of the organic product:	
(e)	(i)	A polyester can be formed when ethane-1,2-diol reacts with benzene-1,4-dicarboxylic acid.	
		Deduce the structure of the repeating unit and state the other product formed.	[2]
		Repeating unit:	
		Other product:	

Turn over

(Question 5 continued)

(ii)	State the type of polymerization that occurs.
(i)	The standard enthalpy change of combustion, $\Delta H_{\rm c}^{\ominus}$, of propanoic acid is $-1527{\rm kJmol^{-1}}$. Determine the standard enthalpy change of formation of propanoic acid, in ${\rm kJmol^{-1}}$, using this information and data from table 12 of the data booklet.
(ii)	Deduce, giving a reason, the sign of the standard entropy change of the system for the formation of propanoic acid from its elements.
(ii)	
(ii)	
(ii)	
	for the formation of propanoic acid from its elements.
	for the formation of propanoic acid from its elements.
	for the formation of propanoic acid from its elements.
	for the formation of propanoic acid from its elements.
	for the formation of propanoic acid from its elements.
	for the formation of propanoic acid from its elements.
	for the formation of propanoic acid from its elements.

(a)	Stat	e the equation for the reaction between methane and bromine to form bromomethane.	[1]
(b)	(i)	Explain, using equations, the complete free-radical mechanism for the reaction of methane with bromine, including necessary reaction conditions.	[4]
	(ii)	Bromomethane reacts with aqueous sodium hydroxide. State the organic product of this reaction.	[1]
(c)		lain why the rate of the reaction between iodomethane, CH_3I , and NaOH (aq) is er than the rate of the reaction between CH_3Br and NaOH (aq).	[2]

(This question continues on the following page)

6.

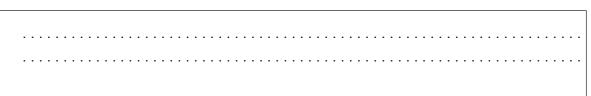
Turn over

(Question 6 continued)

(d)	(i)	Bromine can be produced by the electrolysis of molten sodium bromide. Deduce the half-equation for the reaction at each electrode.	[2]
		Positive electrode (anode):	
		Negative electrode (cathode):	
	(ii)	Predict the products formed at the electrodes during the electrolysis of concentrated aqueous sodium bromide.	[2]
		Positive electrode (anode):	
		Negative electrode (cathode):	

(Question 6 continued)

(e) Bromine reacts with aqueous sodium iodide.


$$Br_2(aq) + 2NaI(aq) \rightarrow I_2(aq) + 2NaBr(aq)$$

Identify the oxidizing agent in this reaction.

[1]

.....

(f) (i) Define the term standard electrode potential, E^{\ominus} . [1]

(ii) Draw a labelled diagram for the voltaic cell in which the following reaction occurs.

$$Mg(s) + Cu^{2+}(aq) \rightarrow Mg^{2+}(aq) + Cu(s)$$

Include in your answer the direction of electron flow and the polarity of the electrodes.

[4]

(Question 6 continued)

(g)

(iii)	A student measures a voltage of 2.65 V in the voltaic cell formed between magnesium and copper half-cells using a digital voltmeter.	
	State the random uncertainty of this value, in V, and the number of significant figures in the answer.	[2]
	Random uncertainty:	
	Significant figures:	
(iv)	Outline how the student can reduce the random error in her results.	[1]
using enth	ermine the standard enthalpy change of formation, $\Delta H_{\mathrm{f}}^{\ominus}$, of NaCl(s), in kJ mol ⁻¹ , g a Born-Haber cycle and tables 7, 10 and 13 of the data booklet. The standard alpy change of atomization (standard enthalpy change of sublimation), $\Delta H_{\mathrm{at}}^{\ominus}$, of s) is +108 kJ mol ⁻¹ .	[4]

7.	(a)	(i)	Ethanol is a primary alcohol that can be oxidized by acidified potassium dichromate(VI). Distinguish between the reaction conditions needed to produce ethanal and ethanoic acid.	[2]
			Ethanal:	
			Ethanoic acid:	
		(ii)	Determine the oxidation number of carbon in ethanol and ethanal.	[2]
			Ethanol:	
			Ethanal:	
		(iii)	Deduce the half-equation for the oxidation of ethanol to ethanal.	[1]
		(iv)	Deduce the overall redox equation for the reaction of ethanol to ethanal with acidified potassium dichromate(VI).	[2]

(This question continues on the following page)

Turn over

[2]

(Quest	ion 7	contin	ued)
--------	-------	--------	------

(b)	Ethanol can be made by reacting aqueous sodium hydroxide with bromoethane. Explain the mechanism for this reaction, using curly arrows to represent the movement of electron pairs.	[4]

(c) (i) Determine the orders of reaction of the reactants and the overall rate expression for the reaction between 2-bromobutane and aqueous sodium hydroxide using the data in the table.

Experiment	[NaOH] / mol dm ⁻³	[C₄H ₉ Br] / mol dm ⁻³	Rate / mol dm ⁻³ s ⁻¹
1	1.00	1.00	1.66×10^{-3}
2	0.50	1.00	8.31×10^{-4}
3	0.25	0.25	1.02×10^{-4}
4	1.00	0.50	8.29×10^{-4}

(Question 7 continued)

	(ii)	Determine the rate constant, k , with its units, using the data from experiment 3.	[2]
	(iii)	Identify the molecularity of the rate-determining step in this reaction.	[1]
(d)	2-br	omobutane exists as optical isomers.	
	(i)	State the essential feature of optical isomers.	[1]
	(ii)	Outline how a polarimeter can distinguish between these isomers.	[2]
(e)		cribe, using an equation, the elimination of HBr from 2-bromobutane, stating the lent used.	[2]

Turn over

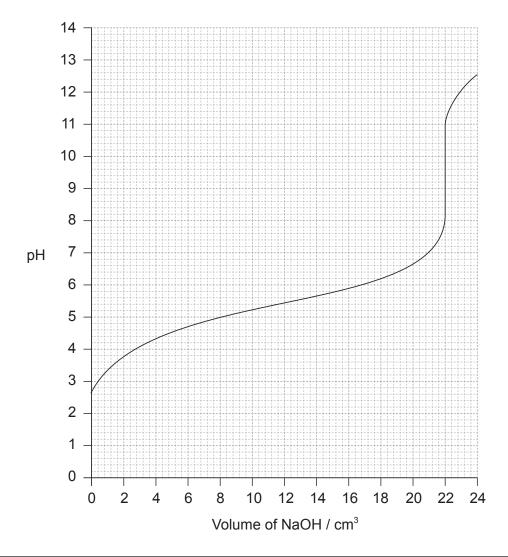
(Question 7 continued)

	Describe the formation of σ and π bonds in an alkene.	[2]
(g)	The two most abundant isotopes of bromine have the mass numbers 79 and 81. Calculate the relative abundance of ⁷⁹ Br using table 5 of the data booklet, assuming the abundance of the other isotopes is negligible.	[2]
(g)	Calculate the relative abundance of ⁷⁹ Br using table 5 of the data booklet, assuming the	[2]
(g)	Calculate the relative abundance of ⁷⁹ Br using table 5 of the data booklet, assuming the	[2]
(g)	Calculate the relative abundance of ⁷⁹ Br using table 5 of the data booklet, assuming the	[2]
(g)	Calculate the relative abundance of ⁷⁹ Br using table 5 of the data booklet, assuming the	[2]

(i)	Outline the difference in dissociation between strong and weak acids of the same concentration.	[1]
(ii)	Describe three tests that can be carried out in the laboratory, and the expected results, to distinguish between 0.10 mol dm ⁻³ HCl (aq) and 0.10 mol dm ⁻³ CH ₃ COOH(aq).	[3
	culate the pH, using table 15 of the data booklet, of a solution of ethanoic acid le by dissolving 1.40 g of the acid in distilled water to make a 500 cm ³ solution.	[4

(This question continues on the following page)

8.



Turn over

(Question 8 continued)

(c) (i) Determine the pH at the equivalence point of the titration and the pK_a of an unknown acid using the acid-base titration curve below.

[3]

(ii) Identify, using table 16 of the data booklet, a suitable indicator to show the end-point of this titration.

[1]

(Question 8 continued)

(iii)	Describe how an indicator, that is a weak acid, works. Use Le Chatelier's principle in your answer.	[2]
(i)	State the formula of the conjugate base of chloroethanoic acid, CH ₂ ClCOOH.	[1]
(ii)	Identify, with a reason, whether chloroethanoic acid is weaker or stronger than ethanoic acid using table 15 of the data booklet.	[1]

Turn over

[3]

(Question 8 continued)

molecules.

(iii)	Determine the pH of the solution resulting when 100 cm ³ of 0.50 mol dm ⁻³ CH ₂ ClCOOH is mixed with 200 cm ³ of 0.10 mol dm ⁻³ NaOH.	[4]
Des	cribe how chlorine's position in the periodic table is related to its electron	
	cribe how chlorine's position in the periodic table is related to its electron ngement.	[2]
	·	[2]
	·	[2]
	·	[2]
	·	[2]
	·	[2

Molecule	Shape	Bond angle	Polarity
SCl ₂			
SCIF ₅			

